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Abstract—We perform sound modular verification to detect
data races in Java programs within a relaxed memory model. We
use annotations to specify preconditions for methods in a module
(a stand-alone class or a Java library) such that the preconditions
guarantee data-race freedom in the module. The annotationsto
ensure data race freedom specify locks required and constraints
on the happens-before ordering, while annotations to restrict the
environment specify bounds on the number of threads and call
depth. A bounded universal environment is then automatically
generated. We model check the module within this environment
to (a) prove that the preconditions are sufficient or (b) detect
any remaining data races that do not violate preconditions.In
the later case, the information of the data race is used to man-
ually strengthen the preconditions and repeat the environment
generation and model checking process until the preconditions
are sufficient to guarantee data race freedom. The annotations
are the contracts that the applications using the module need to
know about in order to verify their own implementation. Our
approach is implemented in Java RaceFinder (JRF) where the
modular analysis outperforms the non-modular analysis.

I. I NTRODUCTION

Most modern computer architectures implement relaxed
memory models that are not sequentially consistent (SC).
Optimizing compilers may transform programs in ways that
preserve the semantics of single threaded programs but vio-
lated SC for multithreaded ones. Developers are attemptingto
take advantage of multi-core architectures without, however,
considering the impact of the underlying relaxed memory
models on the correctness of their programs. Reasoning about
program behaviors within a relaxed memory model is an
especially hard problem. Unwanted behaviors can arise from
reordering of memory accesses allowed by the relaxed memory
model. These behaviors are often difficult to reproduce.

Various verification techniques have been designed to detect
data races manifested on relaxed memory models [1], [2],
[3], [4], [5]. In prior work, we developed a model checking
technique to detect data races which allow non-SC behaviorsin
Java programs [4], [5]. A data race is a concurrent read or write
to a shared memory location without correct ordering between
threads. Given that the Java memory model (JMM) guarantees
the sequential consistency of data race free programs, it is
important to be able to detect data races.

In this work, we present a sound modular verification
technique to ensure data race freedom in Java programs in
the JMM. We have developed a set of annotations to specify
preconditions for the methods in a module. The module can be

either a stand-alone class or a Java library. Data race freedom
is guaranteed in the module if an application program that uses
the module satisfies the specified preconditions at the entryof
the methods in the module. The annotations are contracts that
the application using the module need to know about in order
to verify their own implementation. The preconditions serve
a dual purpose: (a) they are useful in defining correct usage
of the methods in the module and (b) they are used to verify
whether the application actually uses them correctly.

Our modular verification technique ensures that the pre-
conditions specified by the user are sufficient to guarantee
race freedom in the module. In order to ensure data race
freedom, library developers use annotations that specify the
locks required and constraints on the happens-before ordering.
Whereas, in order to restrict the environment of the module,
the developers specify annotations that bound the number of
threads and call depth. Note that the use of our happens-
before relation is specific to weak memory models (WMM),
and the modular analysis builds on our previous work with
model checking race freedom in the Java Memory Model
(JMM). A bounded universal environment is automatically
generated for the module. We model check the module within
the universal environment to (a) prove that the preconditions
are strong enough to guarantee race freedom or (b) detect any
data races that do not violate the preconditions. In the later
case, the conditions of the data race and information from the
counterexample generated by the model checker are used to
manually strengthen the preconditions. The universal environ-
ment generation and model checking process is repeated until
the preconditions are sufficient to guarantee data race freedom.

The manual cost associated with annotations we believe is
acceptable for WMMs because i) data races in WMMs are
non-intuitive; ii) most programmers are unaware of such data
races; and iii) most verification tools are equally unaware
of such data races as they assume a sequentially consistent
memory model which does not reflect reality. Furthermore,
in our experience, defining the preconditions needed for data
race freedom is not complicated. For the examples in our
empirical study in this paper, the initial sets of preconditions
were sufficient to show data race freedom in every benchmark
test.

The modular analysis has been implemented in Java
RaceFinder (JRF) and this paper includes a brief empirical
study comparing the verification time to the a more standard



non-modular analysis. The contributions of this work are as
follows: (a) the ability to specify preconditions requiredto
guarantee data race freedom in the module (b) model checking
the module and preconditions with an automatically generated
bounded universal environment to verify whether the precondi-
tions are indeed sufficient to guarantee data race freedom inthe
module (c) an empirical analysis that demonstrates a reduction
in the time and space required to verify an application and
module through the use of modular verification analysis.

The rest of the paper is organized as follows: Section II
briefly introduces the happens-before summary used to detect
data race; Section III defines the modular analysis; SectionIV
is the proof of correctness; Section V overviews the JPF im-
plementation of the modular analysis; Section VI summarizes
results from the empirical study over a small benchmark set;
Section VII discusses other related work; and Section VIII
concludes and presents future work.

II. SUMMARIZING HAPPENS-BEFORE

Data races in multithreaded Java programs can by detected
by summarizing the happens-before relation created by the
Java relaxed memory model during state space exploration in
a model checker. We model the execution of a Java program
as a set of memory and synchronization actions ordered by
program order within each thread (

po
→) with additional orders

(
so
→) from synchronizing actions between threads. Memory

actions in this context include not just reading and writing
memory, but interacting with locks, starting a thread, detecting
thread termination, etc. Together, these two relations partially
order memory actions along a single path of execution.

To understand what is read or written into memory on any
given action, we define the value-written function (V ) and the
write-seen function (W ). The value written function maps a
value to a write action. The write seen function maps a write
action to a read action such that for a given read actionr,
V (W (r)) returns the value read byr.

The happens-before relation (
hb
→) for the Java memory

model is constructed from a relaxation of the synchronization
order combined with the program order. The relaxation of
the synchronization order forms a partial order called the
synchronizes-with order,

sw
→. It is derived from the synchro-

nization order according to the following rules:
• An unlock action on a monitor lockunlock(m)

synchronizes-with all subsequent lock actionslock (m)
by any thread.

• A write to a volatile variablev synchronizes-with all
subsequent reads ofv.

• The action of starting a thread synchronizes-with the first
action of the newly started thread.

• The final action in a thread synchronizes-with an action
in any other thread that detects the thread’s termination
such asjoin or isAlive.

• The writing of default values of every object field
synchronizes-with the first access of any given field.

In the descriptions above, ”subsequent” is determined by the
synchronization order. Thehappens-beforeorder is the partial

order on the actions in an execution obtained by taking the
transitive closure of the union of

sw
→ and

po
→.

We say that an execution is well-formed if it exhibits
type correctness, correct behavior of locks, consistency with
the sequential semantics of the program, andhappens-before
consistency. Happens-before consistency states that a read
actionr of variablev is allowed to see the results of a write
actionw = W (r) if and only

(r 6
hb
→ w) ∧ (∀w′ 6= w on v, w 6

hb
→ w′ ∨ w′ 6

hb
→ r)

The restriction simply precludes the read from returning values
not yet written or stale values when a read action is ordered
in the happens-before relation with any write action to the
same memory location. For read and write actions to common
memory locations that are not happens-before ordered, no such
restriction exists, allowing for non-deterministic behavior in
non-ordered read actions.

Sequentially inconsistent behavior is observed in a well-
formed execution when read and write actions on a common
memory location are not happens-before ordered. In particular,
the write-seen function is not required to return the most recent
write for an unordered read action or even the same write for
unordered read actions on different threads.1 We say that two
operationsconflict if neither is a synchronization action, both
access the same memory location, and at least one is a write. A
data race is a pair of conflicting actions that are not happens-
before ordered.

A sequentially consistent(SC) execution is one where there
is a total order,

sc
→, on the actions is consistent with both

program order (
po
→) and synchronizing order (

so
→) and where

a readr of variable v sees the results of the most recent
preceding writew:

(w
sc
→ r) ∧ (∀w′ 6= w on v, w 6

sc
→ w′ ∨ w′ 6

sc
→ r)

A Java program iscorrectly synchronizedif all sequentially
consistent executions are data race free; furthermore, anylegal
execution of a well-formed correctly synchronized programis
SC [6], [7]. As such, to prove a Java program data race free,
it is sufficient to only check SC executions for data races.

A multithreaded Java program can be shown free of data
races by checking for races in every legal sequential execution
of the program. To detect races, we summarize the happens-
before order (

hb
→) during state space enumeration. Using the

summary of the happens-before relation, we are able to detect
unordered conflicting memory actions of a common location
during model checking.

The functionh summarizes the happens-before relation (
hb
→)

as follows:Addr is the set of memory locations representing
non-volatile variables in the program,SynchAddris the set of
memory locations representing variables with volatile seman-
tics and locks, andThreadsis the set of threads. The function
h : SynchAddr∪ Threads→ 2Addr maps synchronization
variables and threads to sets of non-volatile variables so that

1We omit for brevity other causality conditions that providesafety guaran-
tees in programs with data races [6].



a variablex such thatx ∈ h(t) means that threadt can read
or write variablex without causing a data race.

In our model of Java execution, we assume that threadmain
is the single thread that initiates the program. An execution of
a programP is a finite sequence of actionsa0, a1, . . . , an. We
further define a set of static non-volatile variablesstatic(P )
necessary for computing the summary functionh. In the
presentation,x represents a location andt represents a thread.

As the h-function definition is inductive, the base case
initializes the function starting with the thread containingmain
so it only includes the static variables in the program.

h0 := λz.if z = main thenstatic(P ) else∅

The inductive step for thehn+1-function depends on the action
an in the program execution.

The way that hn+1 is obtained fromhn depends on
the actionan and is computed using four auxiliary func-
tions release, acquire, invalidate, and new. The function
release(t, x, h) takesh and yields a new summary function
by updatingh(x) to include the value ofh(t): h =̂ h[x 7→
h(t) ∪ h(x)]. The function is used with actions by thread
t that correspond to the source of a synchronizes-with (

sw
→)

edge. The functionacquire(t, x, h) takesh and yields a new
function by updatingh(t) to include the value ofh(x):
h =̂ h[t 7→ h(t) ∪ h(x)]. It is used in actions that form
the destination of a synchronizes-with edge. The function
invalidate(t, x, h) removesx from h(t′) for all t′ 6= t:
h =̂ λz.if (t = z) then h(z) else h(z)\{x}. It is used
in actions where threadt writes non-volatilex. And finally,
the functionnew(t,fields , volatiles , h) returns a new summary
function that includes the setfields in h(t) and initializes the
previously undefined values ofh for the new volatile variables:

h =̂ λz. if (t = z) thenh(t) ∪ fields
else if(z ∈ volatiles) then∅ elseh(z)

The function is used in actions that instantiate new objects.
The summary functionhn+1 is inductively constructed from

hn and the next actionan according to the rules in Table I.
Data race freedom is checked on an execution at each non-
volatile read action. Given a threadt and a non-volatile read
action onx by t at stepi of the execution, ifx ∈ hi(t), then
there is no data race on the read. We have shown that if all SC

TABLE I
RULES FOR THEINDUCTIVE DEFINITION OF hn+1

an by threadt hn+1

write a volatile fieldv release(t, v, hn)
read a volatile fieldv acquire(t, v, hn)
lock the lock variablelck acquire(t, lck, hn)
unlock the lock variablelck release(t, lck, hn)
start threadt′ release(t, t′, hn)
join threadt′ acquire(t, t′, hn)
t′.isAlive() if (t′.isAlive())

then(acquire(t, t′, hn) elsehn

write a non-volatile fieldx invalidate(t, x, hn)
read a non-volatile fieldx hn

instantiate an object new(t, fields, volatiles, hn)

executions of a well-formed program have no races according
to theh-function, then all of its legal executions are SC. JRF is
our implementation of data race detection using theh-function
inside of the JPF framework. It employs many optimizations
to efficiently store and update theh-function [4] and is able
to suggest ways to eliminate detected data races [5].

III. M ODULAR VERIFICATION

In this work we provide a mechanism to library developers
to specify conditions of usage that guarantee race freedom of
a library module. This guarantee is provided for certain num-
bers of threads and certain numbers of method invocations–
predefined bounds from the developer. There are four main
steps that lead to the publishing of conditions of usage that
guarantee race freedom. Fig. 1 represents them along the
development phase and available information. The white head
arrow represents the corresponding refinement as a result
of a data race and condition violation. A library developer
annotates each method with preconditions that ensure data race
free accesses, then a general execution environment within
the specified bounds is generated to close the system. Next,
a combination of model checking and symbolic execution is
used to check whether the preconditions are violated or not.
When the preconditions are not violated and additional races
are detected in the verification process, then the developer
strengthens the conditions or changes the program. This pro-
cess is repeated until no races are found in the library. Finally,
the library can be used by an application. At this phase, the
library has already been verified for the preconditions and
annotated environments and the role of modular composition
is to ensure these conditions are satisfied by the specific
application. When any violation is discovered at this step,
the only necessary refinement is to modify the usage to meet
annotated conditions. While model checking the application,
the model checker does not need to maintain theh-function
for any internal fields of the verified library. This allows usto
achieve significant savings in time and memory when checking
a race in an application which heavily uses already verified
libraries.

A. Annotating methods
The process begins with the developer specifying the con-

straints on the environment that ensure race freedom in the
library. The developer annotates each method in the library
module with preconditions that encode his/her design deci-
sions regarding the data race free guarantee. The constraints
that can be specified in the preconditions are: (1) a bound
on the number of threads under which it is guaranteed to
be race free, (2) a depth-bound that specifies the number of
times a method can be safely invoked, (3) explicit locking and
synchronization requirements, and (4)h-relation requirements.
The rules for specifying the preconditions are as follows:

class annotation := thread bound
method annotation := depth bound (precondition . . . )
precondition := (condition type . . . )
condition type := field in h | lock(field) | synch(field)

The thread bound anddepth bound are integer values. The
class is annotated with athread bound. The thread bound
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Fig. 1. The four steps in modular extension of JRF; annotating constraints
and preconditions, universal environment generation, verifying the correctness
of preconditions, and application composition using the library

is the maximum number of threads that can concurrently
access an object that is an instance of the annotated class.
Each method annotation has adepth bound that bounds the
total number of times a method,Mi, can be invoked along
a single execution path; there can be at mostdepth bound
stack frames for method,Mi, across all the different stacks in
the threads of the system. The method is also annotated with a
list of preconditions. The “. . . ” in the rules is the equivalent of
a Kleene star. For example,(precondition . . .) indicates there
are zero or moreprecondition elements. The preconditions are
lists ofcondition type elements. Theh-relation conditions are
specified with theh-construct, locking conditions are specified
using thelock construct, and the conditions of being invoked
within a synchronized block is specified usingsynchconstruct.

The semantics of the annotations are that at the method
entry, all theprecondition elements should be satisfied such
that for eachprecondition at least onecondition type is sat-
isfied. The elements in the list(precondition . . .) are checked
usingconjunctionwhile the elements in(condition type . . .)
are checked usingdisjunction. This allows us to specify the
preconditions in conjunctive normal form. Furthermore the
depth bound and thread bound also need to be satisfied at
the method entry point.

B. Universal Environment Generation

In order to check whether the specified preconditions are
sufficient to actually provide race freedom, we generate a
universal environment. It is the most general execution envi-
ronment that satisfies the constraints specified by the precon-
ditions. Also, it is desirable to have a universal environment
that maximizes concurrent operations and minimizes any ad-
ditional happens-before orderings that are not specified inthe
preconditions.

The algorithm to generate the universal environment is
shown in Fig. 2. The algorithm can be used to generate
“source code” for an executable environment. The input to the
algorithm in Fig. 2 is thethread bound from the annotated

1:
procedure genUnivEnv(thread bound, depthSum, MA, Ctr)

/∗ MA is the set of method andmethod annotation pairs ∗/
/∗ Ctr is the set of constructors∗/

2: Initialize threadt0
3: Non Volatile Ref := t0.invoke(choose∗Ctr)

/∗ Symbolic Parameters∗/
4: for each i ∈ {1, . . . , thread bound} do
5: Initialize threadti
6: for each j ∈ {1, . . . ,depthSum} do
7: 〈M, depth bound (precondition...)〉 := choose∗MA
8: for each precondition ∈ (precondition...) do
9: Condition := 〈〉

10: for each (condition type...)∈ precondition do
11: Condition := Condition ◦ 〈choose∗ 2(condition type...)〉
12: for each i ∈ {1, . . . ,Condition .size()} do
13: C := Condition .getElementAtIndex(i)
14: if isLock(C) then ti.lock(getField(C))
15: if isSync(C) then ti.synchronize(getField(C))
16: ti.invoke(M) /∗ Symbolic parameters∗/
17: for each i ∈ {Condition .size(), . . . , 1} do
18: C := Condition .getElementAtIndex(i)
19: if isSync(C) then ti.unsynchronize(getField(C))
20: if isLock(C) then ti.unlock(getField(C))

Fig. 2. Algorithm to generate the universal environment

class;depthSum—the summation of alldepth bound values
of the annotated methods in the class;MA—a set of method
and annotation pairs; andCtr—a set of constructors that
are present in the annotated class. Thechoose∗ construct on
lines 3, 7, and11 is used to exhaustively explore all possible
choices. For example, if theCtr set contains two methodsM1

and M2, the choose∗ generates a point of non-determinism
where along one branch the constructorM1 is invoked and
along the other branchM2 is invoked. A threadt0 is initialized
that invokes the constructor to instantiate an instance of the
class and assigns the instance to a non-volatile reference.Non-
volatile references ensure that additional happens-before order
constraints are not added in the universal environment to keep
it as general as possible.

The total number of threads initialized in the universal
environment arethreads bound+ 2. The threadt0 initializes
the constructor. Finally, amain thread is used to initialize all
the other threads in the system. At lines4 and5 in Fig. 2, a
threadti is initialized asi ranges from one tothreads bound.

In Fig. 2, each threadti goes through the inner loop
at line 6 from one to thedepthSum value in order to
generate all possible method sequences in the module. The
choose∗ construct at line7 systematically explores all possible
combinations of the methods during each iteration of the
loop at line 6. We use a simple example to demonstrate
the different method sequences generated by the algorithm in
Fig. 2. Suppose an annotated class has methodsM1 andM2

each with adepth bound of one. The value of thedepthSum
input parameter in Fig. 2 is two (the summation ofM1 and
M2 depth bound values). The following method sequences
are generated: (a)〈M1, M1〉, (b) 〈M1, M2〉, (c) 〈M2, M1〉,
and (d) 〈M2, M2〉. Note that sequences (a) and (d) violate
the depth bound precondition and are handled in the next
verification step. Each method invocation is added at line



16. All methods (including constructors) are invoked with
symbolic parameters.

The algorithm adds locking and synchronization conditions
at lines14 and15 before invoking the method at line16 and
then releases the constraints at lines19 and20 in Fig. 2. The
algorithm first iterates through the(precondition . . .) list of
the method and for eachprecondition explores all possible
choices in the power set ofcondition type elements. Recall
that the semantics state only one of thecondition type needs
to be satisfied, but the universal environment needs to check
the satisfiability of all possible combinations of the elements
in (condition type . . .). The algorithm constructs an ordered
list Condition . It uses the◦ operator to append elements in the
set picked by thechoose∗ construct to theCondition list. We
then iterate over the list ofCondition elements in order to add
the locking and synchronization conditions before invoking the
method (lines14−16). Then in the reverse order of acquisition
the lock and synchronization blocks are released (lines19 −
20). The h precondition is not a programmatic precondition
but rather a mechanism to track data races during verification,
hence, it is handled in the verification step.

Invoking the combinations of various method sequences in
the environment and using symbolic complex data is similar
to the approach presented in [8]. In this work, however, we
combine the method sequence generation with multiple threads
for the verification of data-race freedom rather than unit test
case generation for code coverage in sequential methods. We
believe this combination to be novel.

C. Verification of the race freedom of the module

The annotated library or module is then verified within the
generated universal environment to check whether the precon-
ditions are sufficient to guarantee race freedom or not, and if
races do exist under the preconditions, use the discovered races
to strengthen the preconditions or modify the code. The library
along with the universal environment has a set of threads
{main, t0, t1, . . . , tthread bound} where eachti is a thread with
a unique identifierid → {0, 1, . . . , thread bound+1}; while
Vsym is a finite set of symbolic variables declared in the
universal environment.

The verification is performed under a runtime environment
that implements an interleaving semantics over the threadsin
the program. The runtime environment operates on a program
states that contains: (1) valuations of any concrete variables in
the library; (2) for each thread,ti, values of its local variables,
runtime stack, locks acquired or waiting to be acquired, its
current program location, and anh relation; (3) the symbolic
representations and values of the variables inVsym ; and (4) a
path constraint,φ, (a set of constraints) over the variables in
Vsym. We present below some helper functions on states in
order to define the execution semantics of the system:

• getLoc(s, i) returns the current program location of the
thread that has the identifieri in states.

• getEnabledThreads(s) returns a set of identifiers of
the threads enabled ins. A thread isenabledif it is not
blocked—waiting to acquire a lock or waiting to join.

Given a program state,s, the runtime environment generates a
set of successor states,{s0, s1, . . . , sn} based on the following
rules∀i ∈ getEnabledThreads(s) ∧ l := getLoc(s, i):

1) If l is a conditional branch with symbolic primitive
data types in the branch predicate,P , the runtime
environment can generate at most two possible successor
states. It can assign values to variables inDsym to satisfy
the path constraintφ∧P for the target of the true branch
or satisfy its negationφ∧¬P for the target of the false
branch.

2) If l accesses an object of typeT , then the runtime
environment generates the successor states where the
object is initialized to: (a) null, (b) references to new
objects of typeT and all its subtypes, and (c) existing
references to objects of typeT and all its subtypes [9].

3) If neither rule 1 nor rule 2 is applicable, then the
runtime environment generates a single successor state
by executing program location,l, in threadti.

The rules specified above systematically explore non-
determinism arising from different thread choices as well as
the choices arising from operations on symbolic data.

A depth-first search is used to systematically generate and
search the reachable state space generated by the runtime
environment. Note that the runtime environment can only
check the satisfiability of path constraints that are decidable
and solvable by a particular constraint solver. Also, to limit
the possibility of an infinite search space resulting from
symbolically executing programs with loops, an additional
depth bound for the symbolic execution is provided.

During verification, thelock or sync preconditions are never
violated since the universal environment invokes the method
only after acquiring the locks and synchronization elements,
as shown in Fig. 2. Recall, however, that thedepth bound
can potentially be violated along some method sequences. In
order to handle that scenario, execution along a path is only
explored up to the point where thedepth bound precondition
is violated. When thedepth bound precondition is violated,
the program state is treated as an end of the path and the
search backtracks.

When anh precondition (field in h) violation is detected, the
h function of the currently executing thread will be expanded.
Recall that the universal environment generation process does
not take into account theh preconditions since theh function
is a verification artifact rather than a programmatic construct.
Theh relation is updated by adding thefield (that is violated).
When a (field in h) precondition is violated for a thread,ti,
it means that another thread,tj , containsfield in its h(tj)
function. All variables updated bytj before the update tofield
are also added to theh function of ti to simulate the happens-
before order from the last write tofield to it’s current access.

At the end of model checking, the preconditions are correct
when no races are detected or the existing races are determined
to be benign by the module developer. Data race freedom of
a module means that the internal fields and methods of the
module are free from a data race for any concrete environment
that satisfies the preconditions and runs within the specified



bounds. If, however, a race is detected during model checking,
then it demonstrates that the preconditions are not strong
enough to ensure race freedom. At this point the developer
has two choices, either (1) strengthen the preconditions or
(2) modify the code and repeat the process of generating
the universal environment and verifying the library withinthe
environment until no races exist.

D. Verification of the Application

The application along with the verified module is checked
for data races exploiting the verification results of the module.
When a verified library is used in an application, the internal
non-volatiles are not maintained in theh function. Instead, the
preconditions at every library method invocation are checked;
a precondition violation report indicates inconsistent use of a
library method. The savings in the modular verification are
obtained by the fact that the libraries’ internal fields do not
need to be maintained in theh function when verifying the
composed system.

We can conclude that the application is free from data races
when no precondition violations are reported. Furthermore, if
no races are reported on non-volatile fields defined outside
the library module, the entire system is guaranteed to be
sequentially consistent without checking library internal non-
volatiles.

IV. T HEORETICAL RESULTS

In this section, we justify the soundness of modular race
checking with respect to the race free guarantee.

Definition 1: Given two well-formed executions,E1 =
〈A1, P1,

po
→1,

so
→1, W1, V1〉 and E2 = 〈A2, P2,

po
→2,

so
→2

, W2, V2〉, we say thatE1 andE2 are equivalent with respect
to set of actionsA, denotedE1 =A E2, if and only if
A ⊆ A1 ∩ A2,

po
→1 |A =

po
→2 |A, and

so
→1 |A =

so
→2 |A, where

|A denotes projection onto the setA.
SupposeL is a library with internal non-volatilesfieldsL

that is only accessible through the methods ofL. Let us assume
a universal environmentU with bounding constraintB and
any arbitrary concrete execution contextC of L satisfying

the bounding constraintB with EU = 〈AU , PU ,
po
→

U
,

so
→

U

, WU , V U 〉 and EC = 〈AC , PC ,
po
→

C
,

so
→

C
, WC , V C〉 denot-

ing arbitrary sequentially consistent executions ofU and C,
respectively. When all suchEC satisfy the preconditionsP
of L in boundB and all EU are race free onfieldsL, then
all, EC are race free onfieldsL in the given boundB. This
assumes that the symbolic execution engine has no restriction.
The following two lemmas will justify this.

Lemma 1:For an arbitraryEC , there exists a maximal
prefix of EC , denotedEC

n when its length isn, with an
equivalent executionm prefix of EU , denotedEU

m, w.r.t. AL,
whereAL is the set of actions inL and the actions satisfying
the lock andsynchpreconditions ofL. Such a maximal prefix
of EC , EC

n , is defined as the longest prefix ofEC s.t. EC
n+1

has no equivalent execution in any prefix ofEU without
symbolic restriction.

Proof: The proof is by contradiction. Let us assume
that an executionEC′ has no such maximal prefix that
has an equivalent execution in the set of any prefixes of
EU with satisfying B w.r.t. AL. Given that EC′ satisfies
all preconditions and constraints ofL, we can construct an
executionEU ′ corresponding to a path of the environmentU

by choosing the same actions asEC′|AL
at each transition.

Moreover, given that the parameters are represented symboli-
cally, we can choose the sameW andV for EU ′ asEC′, i.e.,

EU ′ = 〈AC′|AL
, PU ,

po
→

C′

|AL
,

so
→

C′

|AL
, WC′|AL

, V C′|AL
〉.

Such a transition choice is always available in a universal
environment becauseEC′ satisfies the bounding constraint
B and there are enough transition choices inU to cover
all different interleavings withinB. The verification rule in
section III-C guarantees that this path is not ignored sincethis
path satisfies alllock and synchpreconditions and bounding
constraintsB. When such a choice of symbolic representation
is restricted at themth action in EU ′, we can choose ann
prefix of EC′ whereAC′

n |AL
= AU ′

m |AL
. This contradicts the

assumption.
Lemma 2 shows that theh that includes the non-volatile

fields in a library is minimal in the universal environment. In
other words, when a non-volatile field is in theh of a current
thread at some execution step in the universal environment,it
is guaranteed to be in theh of a current thread at the equivalent
execution step in any equivalent concrete environment.

Lemma 2:Supposeh−1 is the inverse ofh whereh−1(x) is
the set of memory locationsv ∈ (SynchAddr∪ Threads) such
that x ∈ h(v). WhenhU andhC denoteh for two equivalent
executions,EU andEC w.r.t. AL, respectively,∀x ∈ fieldsL,
(hU )−1(x) ⊆ (hC)−1(x) holds for all prefixes ofEU |AL

.
Proof: The proof is by induction on the length of the

prefix of EU |AL
.

Basis.We have a length 0 prefix ofEU |AL
. Since no action

in AL happens,∀x ∈ fieldsL, (hU )−1(x) = (hC)−1(x) = φ.
Inductive Step. Assume ∀x ∈ fieldsL, (hU )−1(x) ⊆
(hC)−1(x) holds for (EU |AL

)n. We will show that it also
holds for(EU |AL

)n+1 for all possible(n + 1)th action types.

1) When the(n + 1)th action is an action satisfying the
lock and synch preconditions ofL, the (n +1)th action
is eitherreleaseor acquireand(hU )−1(x) ⊆ (hC)−1(x)
is preserved by theh update rule in Table I.

2) When the(n + 1)th action is eitherreleaseor acquire
using volatile write or read,invalidate, or h irrelevant
actions,(hU )−1(x) ⊆ (hC)−1(x) is preserved by theh
update rule in Table I.

3) Otherwise, the(n+1)th action is either an instantiation
or a publication of theL object or an invocation of a
method inL.

a) When the action is an instantiation of theL object, it
will add the instantiating thread to both(hU )−1(x)
and(hC)−1(x) for all x in fieldsL. This preserves
(hU )−1(x) ⊆ (hC)−1(x).

b) When the action is a publication, given that the
reference inU is defined as non-volatile, this publi-



cation will not change(hU )−1(x). If the reference
in C is a volatile, this will add the current thread
into (hC)−1(x). Otherwise,(hC)−1(x) remains the
same. This preserves(hU )−1(x) ⊆ (hC)−1(x).

c) At a method invocation, (1) Whenh precondition is
not violated inU , (hU )−1(x)|n+1 = (hU )−1(x)|n.
(2) When the h precondition is violated inU ,
this will add the violated field,f , and all other
memory locationsY written prior to that by the
same threadt′ to theh of current threadt. Since the
memory locations inY were last updated byt′, Y ⊆
h(t′). (hU )−1(f)|n+1 ← (hU )−1(f)|n ∪ {t} and
(hU )−1(y)|n+1 ← (hU )−1(y)|n∪{t} for all y ∈ Y .
The assumption guarantees that theh precondition
is satisfied inC and {t} ⊆ (hC)−1(f)|n+1. If
t′ = t, {t} ⊆ (hC)−1(y)|n+1 for all y ∈ Y . When
t′ 6= t, f has been added tot after the last write of
f throughacquireof v by t preceded by therelease
of v by t′. At the time ofreleaseof v by t′, {f}∪Y

had been added toh(v) since{f}∪ Y had been in
h(t′). Whent acquiresv, it gets added{f} ∪ Y to
h(t). This concludes that{t} ⊆ (hC)−1(f)|n+1 and
{t} ⊆ (hC)−1(y)|n+1 for all y in Y .
In all cases,(hU )−1(x) ⊆ (hC)−1(x) is preserved.

Theorem 1 justifies the preconditions that were verified inU

can guarantee the data race freedom on internal fields ofL in
the maximal set of actions ofC for which they are equivalent.

Theorem 1:When a set of preconditions are verified to be
correct in a universal environmentU with bounding constraint
B, any arbitrary concrete environmentC within B is guaran-
teed to be free from data races on any internal fields ofL up
to the maximal set of actions inEC that is equivalent to the
prefixes ofEU without symbolic execution restriction, if all
preconditions ofL are satisfied in all sequentially consistent
executionsEC of C.

Proof: The proof follows immediately from lemma 2.
Since∀x ∈ fieldsL, (hU )−1(x) ⊆ (hC)−1(x) holds for all
prefixes ofEU |AL

, x ∈ hU (t) at (EU |AL
)n guaranteesx ∈

hC(t) at (EC |AL
)n.

When symbolic execution can cover all paths of a module
(the module does not contain any loops, recursion, and gener-
ates constraints that can be solved by the constraints solver) we
can strengthen Theorem 1 to guarantee the data race freedom
for all of EC . SinceC is proved to have no race onfieldsL,
L can be trusted and safely excluded fromh without hurting
the soundness of JRF inC.

V. EXTENDING JPF

The modular verification approach is implemented within
the Java Pathfinder (JPF) tool kit [10]. JPF is an explicit
state model checker for Java bytecode. It systematically ex-
plores thread non-determinism. We use the Java RaceFinder
(JRF), [4], [5], and Symbolic Pathfinder (SPF) extensions [11],
[12]. JRF incorporates knowledge of the JMM while SPF is
a symbolic execution engine used to track symbolic variables

while verifying the module within the universal environment.
The modular analysis extends the non-modular analysis of
JRF.

A. The Listener Implementation

JPF supports a Listener interface that can be used to extend
its functionality. The interface notifies low level events at the
JPF Java virtual machine level through preregistered callback
functions. Types of these events are VM related events,
such asinstructionExecuted, threadStarted, andobjectLocked,
search related events, such assearchAdvanced, searchBack-
tracked and propertyViolated; those events are defined in
VMListener and SearchListener respectively. JRF listener
inherits PropertyListenerAdapter, which implements both
VMListener and SearchListener interfaces. Callback func-
tions inherited fromSearchListener manage the stack struc-
ture to store∆ of h, and callbacks fromVMListener manage
h, as described in Section II. The operationsacquire, release,
invalidateand assertingnoraceare performed as appropriate
when execution of memory model related instructions occur.
To facilitate the selective instrumentation of instructions, JPF
also provides a visitor patternInstructionVisitor in the
gov.nasa.jpf.jvm.bytecode package and JRF visitor used
this feature to implement optimized representation ofh in-
cluding lazy representation of array elements [13], [4], [5]. JPF
Field Factory feature enables JRF to intercept all accesses to
the fields including the accesses originated from MJI (Module
Java Interface) codes. JRF maintains efficienth representation
using the visitor and field factory extensions.

The modular extension to JRF adds another
InstructionVisitor to check preconditions in both
verification (Section III-C) and composing phases
(Section III-D) at every method entry (invokeinstructions).2

B. Saving Constraints as Attributes

The environment constraints and preconditions are an-
notated using thejava.lang.annotation package and
gov.nasa.jpf.jvm.AnnotationInfo class. The annotated in-
formation is saved as an attribute of an object using the
attribute system in JPF. An attribute is a storage extensionto
save additional values for local variables, fields, and objects
and JPF maintains its reference while searching the state space
as it restores the values of fields and objects upon backtrack-
ing. Since the environment constraints are additional datato
be maintained in JRF modular extension and JPF only restores
the attribute reference, any update of an environment constraint
requires copy-on-write to the attribute of the corresponding
object.

C. ChoiceGenerator and SPF for Universal Environment

Though the thread interleaving is the dominating source
of search space, it is also necessary to consider the nonde-
terministic data in model checking. JPF provides two differ-
ent choices, scheduling choice and data choice. Scheduling

2BytecodeFactory could be used to implement the same functionality
but was not an option in this case since SPF had already used this feature
and JPF did not support multiple bytecode factories.



choices related to theh abstraction in partial order reduction
is implemented in the JRF and various search algorithms
and optimization approaches are discussed in [4], [5]. In
this modular extension, the universal environment explicitly
enumerates choice for orders of method invocation and relies
on SPF to define possible parameter values for each method
invocation.

VI. EXPERIMENTAL RESULTS

In this section, we first demonstrate an experience us-
ing a simple example. Consider the slightly modified
UnboundedQueue Java library from [14], shown in Fig. 3.
In UnboundedQueue, the non-volatile shared fieldshead and
tail are protected by explicit locksdeqLock and enqLock,
respectively. However, thesize() method does not lock the
fields and requires the user to acquire both locks before
invoking size(). This requirement is added as a comment in
the code, as shown in Fig. 3. It is possible that the application
programmer is not aware of this requirement and does not
read the comments in the library he is using. In other cases,
the comment may be ambiguous and it might be hard for the
application programmer to determine the library developer’s

public class UnboundedQueue {
private static final int EMPTY= Integer.MIN_VALUE;
public final ReentrantLock enqLock;
public final ReentrantLock deqLock;
Node head, tail;

public UnboundedQueue() {
enqLock = new ReentrantLock();
deqLock = new ReentrantLock()
head = new Node(EMPTY);
tail = head;

}
public int deq() throws EmptyException {

int result;
deqLock.lock();
try {

if (head.next == null)
throw new EmptyException();

result = head.next.value;
head = head.next;

} finally { deqLock.unlock(); }
return result;

}
public void enq(int x) {

if (x == EMPTY)
throw new NullPointerException();

enqLock.lock();
try {

Node e = new Node(x);
tail.next = e;
tail = e;

} finally { enqLock.unlock(); }
}
public int size() { /*requires:enqLock, deqLock*/

int i=(head==tail?0:1);
for (Node tmp=head.next; tmp!=null &&

tmp!=tail ; tmp=tmp.next, ++i);
return i;

}
protected class Node {

final int value;
volatile Node next;
Node(int x) { value = x; next = null; }

}
}

Fig. 3. UnboundedQueue library

@class (threads_bound=3)
public class UnboundedQueue {

. . .

public UnboundedQueue() { . . . }

@method (depth_bound=2)
@precondition (h="CURRENT_THREAD WITH THIS")
public int deq() throws EmptyException { . . . }

@method (depth_bound=2)
@precondition (h="CURRENT_THREAD WITH THIS")
public void enq(int x) { . . . }

@method (depth_bound=2)
@precondition (h="CURRENT_THREAD WITH THIS",

lock={"enqLock"}, lock={"deqLock"} )
public int size() { . . . }
. . .

}

Fig. 4. UnboundedQueue library with precondition annotation

true intent.
The library developer annotates theUnboundedQueue li-

brary with preconditionlock = “enqLock”and“deqLock” at
size() to add the locking constraint in Fig. 4. The bounds on
the threads and call depth are also shown. The constructor can
only be invoked once along a given path. Theh precondition
contains the “this” object that specifies the object should be
safely published.3

The bounded universal environment generated for the
UnboundedQueue example with the preconditions of Fig. 4
is shown in Fig. 5. The environment is for the most
part a Java program. The one element specific to
JPF is the Verify.getInt(min, max) calls. This con-
struct creates a point of non-determinism. JPF cre-
ates max-min choices. For example the line of code
int c = gov.nasa.jpf.jvm.Verify.getInt(1,3) in Fig. 5
generates three choices where the value of c is one, two, and
three respectively. The universal environment is used to verify
that the preconditions for the specified bound to guarantee data
race freedom.

Let’s assume an applicationFairMessage which is slightly
modified from the junit test driver forUnboundedQueue in
[14] to include a call to the other libraryDisBarrier. In
FairMessage, two threads callsenq and two threads calls
deq followed by a barrierawait before next iteration. The
main thread prints the size of the queue after starting the
EnqThread andDeqThread workers without any synchroniza-
tion. This is the source of a data race onhead andtail at the
queue.size(). JRF reported races onhead and tail at the
first two lines ofsize() in UnboundedQueue.java and JRF-E
suggested to change these fields to volatile or to lock before
accessing them inUnboundedQueue rather thanFairMessage as
shown in Fig. 7. On the other hand, the modular race analysis
presented in this paper reported the precondition violation at
System.out.println("queue size = "+queue.size()); in
FairMessage.java as Fig. 8.

3An object ispublishedwhen it reference is made visible to other threads.
Unsafe publication (Section 3.5 of [15]) is a common error that can allow an
object to become visible before its initialization is complete.



public class UnboundedQueueVerify {
UnboundedQueue obj;
@Symbolic("true")
int sym0;

public static void main(String[] args) {
new UnboundedQueueVerify().doTest();

}
void doTest() {

for (int i=0 ; i < 1 ; ++i) new Group1Thread().start();
for (int i=0 ; i < 3 ; ++i) new Group2Thread().start();

}
class Group1Thread extends Thread {

public void run() {
for ( int i=0 ; i < 1 ; ++i) {

int c = gov.nasa.jpf.jvm.Verify.getInt(1,1);
if ( c == 1 ) obj = new UnboundedQueue();

}
}

}
class Group2Thread extends Thread {

public void run() {
for ( int i=0 ; i < 6 ; ++i) {

while ( obj==null);
int c = gov.nasa.jpf.jvm.Verify.getInt(1,3);
if ( c == 1 ) {

obj.deqLock.lock();
obj.enqLock.lock();
try { obj.size(); }
finally{

obj.enqLock.unlock();
obj.deqLock.unlock();

}
}
else if ( c == 2 ) {obj.enq(sym0);}
else if ( c == 3 ) {

try{obj.deq();} catch (EmptyException e) {}
}

}
}

}
}

Fig. 5. Generated universal environment forUnboundedQueue

public class FairMessage {
UnboundedQueue queue = new UnboundedQueue();
DisBarrier bar = new DisBarrier(NUM_THREAD);
static final int NUM_THREAD=2, PER_THREAD=2;

public static void main(String[] args) {
(new FairMessage()).run();

}
private void run() {

for ( int i=0 ; i < NUM_THREAD ; ++i)
{ new EnqThread(i).start();

new DeqThread().start();
}
System.out.println("queue size = "+queue.size());

}
class EnqThread extends Thread {

int id;
EnqThread(int i) { id = i; }
public void run() {

for (int i = 0; i < PER_THREAD; i++) queue.enq(id+i);
}

}
class DeqThread extends Thread {

public void run() {
for (int i = 0; i < PER_THREAD; i++)

try {
queue.deq();
bar.await();

} catch (EmptyException ex) {}
}

}
}

Fig. 6. FairMessage usesUnboundedQueue andDisBarrier

================================================
JRF results
================================================ data race #1
edu.ufl.cise.jrf.util.HBDataRaceException

at THREAD (java.lang.Thread@ from null)
to MEMORY (jrfm.UnboundedQueue@.tail

from "volatile UnboundedQueue queue = new UnboundedQueue();"
at jrfm/FairMessage.java:10 in (<init>))

in INSTRUCTION (getfield)
of SOURCE ("for (Node tmp=head.next; tmp!=null &&

tmp!=tail ; tmp=tmp.next, ++i);"
at jrfm/UnboundedQueue.java:72)

. . .
================================================
JRF-E results
________________________________________________ analyze counter example
data race source statement : "putfield" at jrfm/UnboundedQueue.java:58 :

"tail = e;"
by thread 1

data race manifest statement : "getfield" at jrfm/UnboundedQueue.java:72:
"for (Node tmp=head.next; tmp!=null &&

tmp!=tail ; tmp=tmp.next, ++i);"
by thread 0

Change the field "jrfm.UnboundedQueue@.tail
from "volatile UnboundedQueue queue = new UnboundedQueue();"
at jrfm/FairMessage.java:10 in (<init>)" to volatile.

Lock "java.util.concurrent.locks.ReentrantLock@
from "enqLock = new ReentrantLock();"
at jrfm/UnboundedQueue.java:25 in (<init>)"
before accessing (jrfm.UnboundedQueue@.tail)

. . .

Fig. 7. Race inFairMessage detected by JRF and suggestions provided
by JRF-E

================================================
JRFM-ComposeModule results
================================================ precondition violation #0
in "jrfm.UnboundedQueue.size()"

the lock precondition of method (size) "enqLock, deqLock" is violated.
at "System.out.println("queue size = "+queue.size());"
in "jrfm.FairMessage.run(FairMessage.java:23)"

================================================ precondition violation #1
in "jrfm.UnboundedQueue.size()"

the lock precondition of method (size) "enqLock, deqLock" is violated.
at "assert (queue.size() == 0);"
in "jrfm.FairMessage.run(FairMessage.java:17)"

. . .

Fig. 8. Precondition violations inFairMessage detected by JRF modular
extension

The important difference in the results ofUnboundedQueue
example is the target of verification. JRF and its other ex-
tensions are focusing on the verification of the whole target
application, on the other hand, the modular method presented
in this paper partitions the target into trusted libraries which
had already verified for the predefined consistent usage pattern
and untrusted modules which should meet those constraints.
The data race in the application should be eliminated by mod-
ifying the untrusted codes which violates the preconditions of
immutable libraries.

The rest of this section will present the experimental results
using the JRF modular extension for the selected set of test
cases used in JRF[4]. Note that JRF is one step verification for
individual application context and modular approach consist of
a library verification per each library and a constraint checking
per individual application contexts. We can assume that a
library is verified once at the time of its development phase
and referenced multiple times in different application contexts
so that the one-time library verification overhead is acceptable.
This is discussed further in Fig. 9.

Table II summarizes the resources consumed for the
library verification. LOC specifies the lines of code in the
library and LOP are the precondition annotations in lines (one
precondition per line). The time and memory expended in the
environment generation (env. generation) and the resources



TABLE II
T IME AND MEMORY CONSUMED IN THE LIBRARY VERIFICATION STEP

library annotation env. generation precondition verification
LOC LOP time memory jpf-states h-states time memory

Peterson 80 13 0.45 sec 1292 KB 3504 2919 193 sec 864 MB
Bakery 129 15 0.48 sec 1292 KB 1316 3278 172 sec 966 MB

CountDownLatch 108 5 0.40 sec 1292 KB 1221 2451 405 sec 864MB
UnboundedQueue 89 7 0.46 sec 1292 KB 2005 2141 651 sec 1168 MB

DisBarrier 92 3 0.41 sec 1292 KB 1353 10592 1310 sec 952 MB
ConcurrentStack 112 5 0.46 sec 1292 KB 3060 1933 159 sec 973 MB

IlConcurrentStack 194 5 0.48 sec 1292 KB 12631 26775 3687 sec 2030MB
IlConcurrentStackv2 194 5 0.48 sec 1292 KB 12043 25586 3320 sec 1966 MB

ConcurrentLinkedQueue 119 5 0.47 sec 1292 KB 2896 27915 1899 sec 984 MB

TABLE III
T IME TAKEN AND MEMORY USED IN MODULAR VS . NON-MODULAR VERIFICATION

example LOC configuration jpf-states h-states time memory
Peterson 194 modular 344 40 32 sec 863 MB

JRF 344 133 35 sec 863 MB
Bakery 258 modular 7410 1070 819 sec 1663 MB

JRF 7504 24152 4067 sec 1825 MB
CountDownLatch 211 modular 509 301 147 sec 834 MB

JRF 509 622 202 sec 834 MB
UnboundedQueue 165 modular 384 50 43 sec 857 MB

JRF 384 603 106 sec 860 MB
DisBarrier 188 modular 1443 1021 191 sec 984 MB

JRF 1443 1500 280 sec 983 MB
FairMessage* 280 modular 1648 1090 314 sec 992 MB

JRF 1648 6183 1357 sec 1017 MB

ConcurrentStack 427 modular 391 13 29 sec 717 MB
JRF 391 397 48 sec 862 MB

IlConcurrentStack 447 modular 1623 2191 530 sec 859 MB
JRF 1623 2515 551 sec 947 MB

IlConcurrentStackv2 447 modular 1535 2082 495 sec 602 MB
JRF 1535 2407 523 sec 603 MB

ConcurrentLinkedQueue 349 modular 170 34 43 sec 483 MB
JRF 170 143 66 sec 483 MB

* FairMessage uses two librariesUnboundedQueue andDisBarrier.

expended in the verification process are summarized. Theh

annotation in the method contain “this”, the thread bounds
are set to three, the call depth bounds are set to three in
DisBarrier and two in all others, and theUnboundedQueue
contains locking preconditions.

While considering the cost incurred during precondition
verification phase, it is important to consider the following
points: i) the verification overhead is amortized over each use
of the library because the manual specification and verification
of the conditions are done only once by a library developer;
ii) the conditions ensure the library is used in a data race
free way in any deployment context (useful for adopters);
and iii) applications that employ several libraries are easier
to verify for race freedom as each annotated library reduces
the verification burden.

Table III presents the experimental results comparing JRF
and modular analysis of applications that use the verified pre-
conditions of the module. Note that the a jpf-state encompasses
the status of heap and threads such as values of fields, program
counters, and the status of threads, while ah-state considers
theh-relation in addition to the jpf-state. The modular analysis
explores fewer states than JRF as expected mostly due to the
savings in h-states. The modular analysis utilizes less time and
memory compared to JRF in our examples. TheFairMessage

example saves more time and memory thanUnboundedQueue

and DisBarrier since it uses both libraries and the savings

are compositional. The library modules that use very few
non-volatile fields and the implementation does not have
many release-acquire operations, the overhead of checking
preconditions may degrade performance. Those libraries we
believe are not very suitable for the modular analysis presented
in this work.

Fig. 9 represents the temporal and spatial requirements of
JRF and the modular approach. Based on the assumption
that a library verification is necessary only once and its
result can be applied to multiple contexts, the time for the
modular approach in Fig. 9(a) is taken by averaging (environ-
ment generation time+precondition verification time+sum of
composition times for application contexts)/(total number of
application contexts). When considering only one application
context, the precondition verification for universal environment
overhead outweigh the gain of modularization.4 However, this
overhead is paid back by increasing number of library uses
in different contexts. As given in Fig. 9(a), 100 uses of the
verified library compensates for the verification overhead in
time. Memory requirements are not accumulative and only
maximum memory amount required in each verification step
is important. Fig. 9(b) shows that the universal environment,
which covers more space than individual application contexts,

4Bakery was one exception where the application context used more than
one instance of the library class.
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(a) Comparison of times spent in JRF for the application given in Table III;
JRF execution time without this modular extension, the sum of verification and
composition time for the libraries given in Table II and application contexts in
Table III, and average times when we assume the library in Table II is used
by 100 different application contexts with average composition phase time as
Table III are compared.
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(b) Max memory required by JRF and modular verification; Notethat modular
verification data represents the maximum of the three memoryrequirements in
environment generation, precondition verification, and modular composition.

Fig. 9. Comparison of JRF and modular extension resource requirements

is the most space consuming phase. Though, memory is not
the hotspot as long as the library is verifiable within the JVM
heap boundary and the modularization would be more efficient
when an application utilizes multiple instances of libraries.

VII. R ELATED WORK

Race detection tools based on static analysis techniques
typically sacrifice completeness, in the sense that they can
only deal with a particular set of programming idioms, and
thus disallow legal data-race free programs. Some tools delib-
erately sacrifice soundness for scalability, failing to identify
certain data races. For example, Chord [16], which can handle
lexically-scoped lock-based synchronization, fork/joinsyn-
chronization, and wait/notify, starts by constructing a superset
of possible conflicting operations, then filters this set using
a sequence of analyses, and reports a possible data race for
all remaining pairs. Another example is the rcc checker [17]
as recently resurrected and extended for the Mobius project
[18]. This tool uses a type theory base approach (which
requires annotations by the users) to ensure that locking is
done correctly. In its most recent incarnation, it also recognizes
that volatile variables do not need to be protected by locks to
avoid data races. However, in whatever form, the tool cannot
deal with happens-before edges obtained via transitivity and
generates false positives as a result.

Tools that perform dynamic race detection look for races in
particular executions of the program. The disadvantage is that
dynamic tools only detect problems in the test cases that are
actually examined. These are typically based on maintaining
vector clocks or the lock-set algorithm with checks to see
if every shared variable access is consistently locked. Eraser
[19] is an influential example of a lock-set based detector. The
tool most closely related to JRF is Goldilocks[20]. Goldilocks
is a dynamic analysis tool using an algorithm based on a

relation that is very similar to the inverse ofh. In other
words, the Goldilocks algorithm maintains a function for each
variable that indicates which threads can access the variable.
As with all tools performing dynamic analysis, the required
instrumentation of the program may change its behavior and
the tool is limited to analyzing paths that happen to be tested.

Race Free Java is a type system for a simplified version
of Java that statically prevents races by allowing the type
system to ensure that each object is consistently locked, is
immutable, or is local to a single thread. It cannot deal with
other widely used concurrent programming idioms such as
those using volatile variables, the java.util.concurrent.atomic
classes, barriers, detecting termination, etc [21]. Parameter-
ized RaceFreeJava extends RaceFreeJava to information about
object ownership [22], [23].

Bounded model checking has been used for the last several
years and considers a finite prefix of a path with lengthk
by unrolling the finite state machine fork steps [24]. The
verification of the module within the universal environmentis
an example of bounded model checking.

Bandera automatically generates an environment from en-
vironment assumptions provided as LTL formulas or regular
expressions [25]. The generated environment is an abstraction
that approximates the actual environment whereas in this work
the universal environment is general. The Calvin checker [26]
is a modular approach using assume-guarantee model check-
ing. It uses user specifications about environment assumptions
to constrain thread interactions based on locking. There are
no contraints applied on thread interactions in our approach.
Environments for components automatically using side-effects
and points-to analyses in modular model checking [27]. An
interface grammar is used to generate component stubs to
use in compositional model checking [28]. Precise component
interfaces are generated using learning techniques duringstate



space traversal [29]. The techniques for interface generation
cannot be applied to data race detection since the happens-
before ordering between modules cannot be specified through
an interface.

Static analysis has been used for environment generation. A
dataflow analysis has been used to generate the most general
environment of an open reactive system [30]. Static analysis
has been used to generate a reasonable behavior model of the
artificial environmentby focusing on parallelism [31]. These
techniques, however, cannot detect data races.

VIII. C ONCLUSION

Detecting data races in relaxed memory models is a difficult
problem. We present a novel modular verification technique
to ensure race freedom in Java programs in the JMM. A
library or module developer annotates methods in the mod-
ule with preconditions that ensure data race freedom. Given
the preconditions, we generate a universal environment that
invokes methods in the module with symbolic variables.
Symbolic execution and explicit state model checking verify
whether the preconditions indeed guarantee race freedom. To
the best of our knowledge this is the first use of symbolic
execution with a universal environment. If additional races
are detected in the verification process then the developer
strengthens the preconditions or changes the program and
repeats the verification process. Finally, the applicationthat
uses the module is checked to ensure that it satisfies the
module’s preconditions and does not introduce its own data
races. Future work is to extend theh precondition to more
powerfulh invariant that captures the transitivity of happens-
before relationships required to guarantee the race freedom
using lock-free algorithms, and to relax the bounding in the
number of threads and depths that limits the applicability of
this approach. We have an end to end implementation within
the JPF tool kit for the JMM where we extend JRF race
detector to perform the modular analysis. We believe, however,
that our approach can be applied to other memory models,
such as C# and C++.
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